Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY Winter Examination - 2022

Subject Name : Metric Space

Subject	t Code: 4SC0	5MES1	Branch: B.Sc. (Mathematic	es)
Semest	er: 5	Date: 24/11/2022	Time: 02:30 To 05:30	Marks: 70
Instruct (1) (2) (3) (4)	ions: Use of Progra Instructions v Draw neat dia Assume suita	ammable calculator & any vritten on main answer bo agrams and figures (if nec ble data if needed.	y other electronic instrument is pro ook are strictly to be obeyed. cessary) at right places.	hibited.
Q-1	Attemp	t the following questions	:	[14]
	a) Let (<i>X</i> , <i>c</i>	<i>l</i>) be a metric space and <i>B</i>	$E \subset X$. Then set <i>E</i> is said to be close	ed set (01)
	if 1) E 2) E 3) Ē 4) Ē b) Which o 1) (2) E 3) Ø 4) N	E' = X $E' = \emptyset$ $\overline{E} = X$ $\overline{E} = E$ of the following subset of $[0,1]$ R \emptyset None of these	R is neither open nor closed?	(01)
	c) Let (X, a) 1) { 2) X 3) (4) [(b) be a discrete metric space x (0,1) (0,1)	ace and $r > 1$, then $S_r(x) = $	(01)
	d) Define :	Connected Set.		(01)
	e) Define :	Limit Point.	$\bar{A} = \bar{A} = $	(01) (01)
	g) Define :	Metric Space.	ue of faise: $A \sqcap D \subseteq A \sqcap D$.	(01)
	h) Check w subsets of	whether the statement is true of metric space R .	ue or false: $(1,2)$ and $(-1,3)$ are s	eparated (01)
	i) Find \overline{A} f	or $A = [-1,3)$.		(01)
	j) Check w metric sj	whether the statement is truppace X and B be a subset of a	ue or false: Let <i>A</i> be connected sub of <i>X</i> such that $A \subseteq B \subseteq \overline{A}$ then <i>B</i> is	oset of (01) is also
	k) Let $X =$	\mathbf{R} and $A = \emptyset$ then find <i>in</i>	t A and ext A.	(02)
	I) Define :	Continuous function in M	Ietric space.	(02)

Attem	pt an	y four questions from Q-2 to Q-8.	
Q-2		Attempt all questions	
	a)	Let(X, d)be a metric space and $d_1: X \times X \to \mathbf{R}$ defined by	(06)
		$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ then prove that d_1 is also a metric on X.	
	b)	Prove : Arbitrary union of open sets of metric space is an open set.	(05)
	c)	Show that every finite subset of metric space is closed.	(03)
Q-3		Attempt all questions	[14]
	a)	State and prove Cantor's Intersection Theorem.	(06)
	b)	Let d be matrix on non-empty set X. Define $d^*: R \times R \to R$ by	(05)
		$d^*(x, y) = 2 d(x, y)$ then prove that (X, d^*) is also metric space.	
	c)	Let $X = [0,1]$ with usual metric space. Find $S_1\left(\frac{1}{2}\right)$, $S_{\frac{1}{3}}(0)$ and $S_{\frac{3}{32}}\left(\frac{1}{32}\right)$.	(03)
0-4		Attempt all questions	[14]
C	a)	Prove that the image of Cauchy sequence under uniformly continuous function is again a Cauchy sequence. Can we replace 'uniform continuous' by 'continuous' in this statement?	(06)
	b)	Prove that in a metric space every open sphere is an open set.	(05)
	c)	If (X, d) is a metric space and $A, B \subset X$ then show that $(A \cup B)' \subseteq A' \cup B'$.	(03)
0-5		Attempt all questions	[14]
L.	a)	For a non-empty subset A of metric space (X, d) show that the function	(07)
		$f: X \to \mathbf{R}$ defined by $f(x) = d(x, A)$, $x \in X$ is uniformly continuous. Also show that $f(x) = 0$ if and only if $x \in \overline{A}$	
	b)	Prove that any contraction mapping f of non-empty complete metric space	(07)
)	(X, d) into itself has a unique fixed point.	()
O-6		Attempt all questions	[14]
C	a)	Let (X, d_1) and (Y, d_2) be any two metric spaces, then prove that $f: X \to Y$	(07)
		is continuous if and only if $f^{-1}(F)$ is closed in X whenever F is closed in Y.	
	b)	Prove : Continuous image of compact set is compact set.	(07)
Q-7		Attempt all questions	[14]
	a)	Let Y be a subset of metric space (X, d) then show that following are	(10)
		equivalent :	
		(i) Y is connected.	
		(1) Y can't express as disjoint union of two non-empty closed sets. (iii) \mathcal{O} and V are only sets which are both onen and closed in V	
	b)	(iii) \forall and Y are only sets which are both open and closed in Y. Let (X, d) be a discrete metric space then prove that every function	(04)
	U)	$f: X \to Y$ is continuous on X.	(07)
0.0			F4 43
Q-8	e)	Attempt all questions Show that every closed and bounded subset of real line is compact	[14] (00)
	а) b)	Define Cantor set and show that cantor is a closed set.	(09)
	~,		()